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Abstract— The purpose of this paper is to study the methodology involved in Computational Fluid Dynamics (CFD) technique of fluid 

flow.Computational fluid dynamic results are directly analogous to wind tunnel results obtained in a laboratory they both represent sets of data for given 

flow configuration at different Mach numbers, Reynold numbers, etc. The cornerstone of computational fluid dynamics is the fundamental governing 
equations of fluid dynamics i.e. the continuity, momentum and energy equations. These equations speak physics. The purpose of this study is to discuss 
these equations for aerodynamics. In CFD the fundamental physical principles applied to a model of flow can be expressed in terms of basic mathemati-

cal equation  which are either Integral equation or partial differential equation. In the world of CFD, the various forms of the equations are of vital interest. 
In turn, it is important to derive these equations in order to point out their differences and similarities, and to reflect on possible implications in their appli-
cation to CFD. An example of application of CFD to aerodynamics is discussed in this paper. Finally, post-processing and interpreting the result com-

pletes the methodology. 

 

Index Terms— Partial Differential equations, Fluid flow, Finite control volume, Substantial derivative, Aerodynamics, CFD , Navier-stokes 

equations 

——————————      —————————— 

1 INTRODUCTION                                                                     

OMPUTATIONAL fluid dynamics (CFD) is the branch of 

fluid dynamics providing a cost-effective means of simu-

lating real flows by the numerical solution of the governing 

equations.The governing equations for Newtonian fluid dy-

namics, namely the Navier- Stokes equations, have been 

known for over 150 years. However, the development of re-

duced forms of these equations is still an active area of re-

search, in particular, the turbulent closure problem of Rey-

nolds averaged Navier-Stokes equations [2]. 

2 FLUID FLOW EQUATIONS 

In obtaining the basic equations of fluid motion, the follow-

ing philosophy is always followed: 

(1) Choose the appropriate fundamental physical principles 

from the laws of physics, such as 

 (a) Mass is conserved 

 (b) F = ma (Newtons 2nd Law). 

 (c) Energy is conserved. 

(2) Apply these physical principles to a suitable model of 

the flow. 

(3) From this application, extract the mathematical equa-

tions which embody such physical principles. 
 
A solid body is rather easy to see and define; on the other 
hand, a fluid is a squishy substance that is hard to grab hold 
of. If a solid body is in translational motion, the velocity of 
each part of the body is the same; on the other hand, if a fluid 

is in motion the velocity may be different at each location in 
the fluid. How then do we visualize a moving fluid so as to 
apply to it the fundamental physical principles? 
For a continumm fluid, the answer is to construct the follow-
ing models: 

1. Finite Control Volume & Infinitesimal Fluid Element 
2. Substantial Derivative & Physical meaning of   .V 
3. Navier-Stokes Equation 

 
2.1 Finite Control Volume & Infinitesimal Fluid Element 

Consider a general flow field as represented by the stream-
lines[1] in Fig. 1. The control volume (C.V) is represented by V 
and control surface is represented by S. The C.V may be fixed 
in space with the fluid moving through it as shown in Fig. 1a. 
Alternatively the C.V may be moving with the fluid such that 
the same fluid particles are always inside it as in Fig. 1b.  

 
 

 
 
 

 
 

 
 
 

 
 
 
 
 
 
The equations are obtained from the finite control volume 
fixed in space in either integral or partial differential form and 
are called the conservation form of the governing equations. 
The equations obtained from the finite control volume moving 
with the fluid in either integral or partial differential form are 

C 
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Fig. 2. Fluid element moving in the flow fieldillustration for 
thesubstantial derivative 
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called the non-conservation form of the governing equations.  
Let us imagine an infinitesimally small element in the flow, 

with a differential volume, dV. The fluid may be fixed in space 
with the fluid moving through it and alternatively it may be 
moving along a streamline with a vector velocity v equal to 
the flow of velocity at each point. Again, instead of looking at 
the whole flow field at once the fundamental equation are ap-
plied to just the fluid element itself. This application leads di-
rectly to the fundamental equations in partial differential 
equation form. So in general we will be dealing with conserva-
tion type of partial differential equations in this study. 

 
2.2. Substantial Derivative & physical meaning of   V 

Before deriving the governing equations, we need to establish 
a notation which is common in aerodynamics that of the sub-
stantial derivative[2]. Let us consider a small fluid element 
moving with the flow as shown in Fig. 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here, the fluid element is moving through Cartesian space. 

The unit vectors along x,y and z axes are   , j and k respective-
ly. The vector velocity field in this Cartesian space is given by 
equation (1)  

                             (1) 

Note that we are considering in general an unsteady flow, 

where u, v, and w are functions of both space and time, t. In 

addition, the scalar density field is given by 
             

Furthermore, in Cartesian coordinate the vector operator is 

defined as in equation (2) 

     
 

   
    

 

  
         

  
       (2) 

Taylor series expansion from point 1 to point 2 can be given as 

in equation (3) 

        
  

  
 
 
          

  

  
 
 
          

  

  
 
 
         

  
  

  
 
 
                                (3) 

Dividing by t2 – t1 and ignoring higher order terms we get  
       

      
    

  

  
 
 

        

      
  

  

  
 
 

        

      
  

  

  
 
 

        

      
   

  

  
 
 
      

      (4) 

The left side of equation (4) is the average time-rate of change 

in density from point 1 to point 2. By taking limits as t2 ap-

proaches t1 this term becomes, 

                                            

       

     
  

  

  
  (5) 

If we take the derivative of equation (4) we get the following : 
  

   
  

   

  
  

  

   
   

  

  
 

  

  
    (6) 

 

The above equation can be written in cartesian cordinate form 

which is the substantial derivative form: 
 

   
  

  

  
  

 

   
   

 

  
 

 

  
    (7) 

 

From equation (2) & (7) we get the substantial derivative  
 

   
 

 

  
                  (8) 

We once again we once again emphasize that D/Dt is the 

substantial derivative, which is physically the time rate of 

change following a moving fluid element; 
 

  
  is called the local 

derivative, which is physically the time rate of change at a 

fixed point;            is called the convective derivative, which is 

physically the time rate of change due to the movement of the 

fluid element from one location to another in the flow field 

where the flow properties are spatially different. The 

substantial derivative applies to any flow-field variable, for 

example, Dp/Dt, DT/Dt, Du/Dt, etc., where p and T are the 

static pressure and temperature respectively[3]. For example: 

 
  

   
 

   

  
              

   

  
  

   

  
  

  

   
   

  

  
  (9) 

 
2.3 Navier-Stokes Equation 

The Navier-Stokes equations, developed by Claude-Louis 
Navier and George Gabriel Stokes in 1822, are equations 
which can be used to determine the velocity vector feild that 
applies to a fluid given some initial conditions[3]. They arise 
from the application of Newton's second law in combination 
with a fluid stress (due to viscosity) and a pressure term.  

 

  
  

  
                (10) 

 
where   denotes the density of the fluid and is equivalent to 
mass,   /  + ∙   is the acceleration and u is velocity, and 
 ∙ +  is the total force, with  ∙  being the shear stress and f 
being all other forces. We may also write this as 
 
 [  /  + .  ]= −  + μ 2 +    (11) 

 
The term on the LHS are often referred as inertial terms, and 
arise from the momentum changes. These are countered by 
the pressure gradient, viscous forces and body forces. μ is dy-
namic viscosity.  

The Navier–Stokes equations dictate not position but rather 
velocity. A solution of the Navier–Stokes equations is called a 
velocity field or flow field, which is a description of the veloci-
ty of the fluid at a given point in space and time as in equation 
(6), if velocity is considered in place of density. 

 

Fig. 2. Fluid element moving in the flow fieldillustration for 
thesubstantial derivative 
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Finally, by dividing out   and subtracting  ∙  , we obtain the 
traditional form of the Navier-Stokes equation below 
  

   
           

 

  
            (12) 

3 CFD EQUATIONS  

Computational fluid dynamics (CFD) is a branch of fluid me-

chanics that uses numerical analysis and algorithms to solve 

and analyze problems that involve fluid flows. The fundamen-

tal basis of almost all CFD problems is the Navier–Stokes 

equations. The Navier-Stokes equations consists of a time-

dependent continuity equation for conservation of mass, three 

time-dependent conservation of momentum equations and a 

time-dependent conservation of energy equation. There are 

four independent variables in the problem, the x, y, and z spa-

tial coordinates of some domain, and the time t. There are six 

dependent variables; the pressure p, density r, and tempera-

ture T (which is contained in the energy equation through the 

total energy Et) and three components of the velocity vector; 

the u component is in the x direction, the v component is in 

the y direction, and the w component is in the z direction, All 

of the dependent variables are functions of all four independ-

ent variables. The differential equations are therefore partial 

differential equations and not the ordinary differential equa-

tions that you study in a beginning calculus class.  

You will notice that the differential symbol is different than 

the usual "d /dt" or "d /dx" that you see for ordinary differen-

tial equations. The symbol "partial" is is used to indicate par-

tial derivatives. The symbol indicates that we are to hold all of 

the independent variables fixed, except the variable next to 

symbol, when computing a derivative. The set of equations 

are[6]: 

Continuity:  

 
X-Momentum 

 
Y-Momentum 

 
Z-Momentum 

 
Energy: 

 
where Re is the Reynolds number which is a similarity pa-

rameter that is the ratio of the scaling of the inertia of the flow 

to the viscous forces in the flow. The q variables are the heat 

flux components and Pr is the Prandtl number which is a simi-

larity parameter that is the ratio of the viscous stresses to the 

thermal stresses. The   variables are components of the stress 

tensor. A tensor is generated when you multiply two vectors 

in a certain way. Our velocity vector has three components; 

the stress tensor has nine components. Each component of the 

stress tensor is itself a second derivative of the velocity com-

ponents.  

 

The terms on the left hand side of the momentum equations 

are called the convection terms of the equations. Convection is 

a physical process that occurs in a flow of gas in which some 

property is transported by the ordered motion of the flow. The 

terms on the right hand side of the momentum equations that 

are multiplied by the inverse Reynolds number are called the 

diffusion terms. Diffusion is a physical process that occurs in a 

flow of gas in which some property is transported by the ran-

dom motion of the molecules of the gas. Diffusion is related to 

the stress tensor and to the viscosity of the gas. Turbulence, 

and the generation of boundary layers, are the result of diffu-

sion in the flow. The Euler equations contain only the convec-

tion terms of the Navier-Stokes equations and can not, there-

fore, model boundary layers. There is a special simplification 

of the Navier-Stokes equations that describe boundary layer 

flows.  

Notice that all of the dependent variables appear in each equa-

tion. To solve a flow problem, you have to solve all five equa-

tions simultaneously; that is why we call this a coupled system 

of equations. There are actually some other equation that are 

required to solve this system. We only show five equations for 

six unknowns. An equation of state relates the pressure, tem-

perature, and density of the gas. And we need to specify all of 

the terms of the stress tensor. In CFD the stress tensor terms 

are often approximated by a turbulence model[7]. 

3.1 CFD SIMULATION 

CFD simulates fluid (either liquid or gas) passing through or 
around an object. The analysis can be very complex—for ex-
ample, containing in one calculation heat transfer, mixing, and 
unsteady and compressible flows. The ability to predict the 
impact of such flows on your product performance is time 
consuming and costly without some form of simulation tool. 
The simulation is done in three steps[5]: 

1. Preprocessing : Define geometry 
2. Solver: Once the problem is set-up defining the bound-

ary conditions we solve it with the software on the 
computer. 

3. Postprocessing: Once we get the results as values at our 
probe points we analyse them by means of color plots, 
contour plots, appropriate graphical representations 
can generate reports. 

  
3.1.1 Airfoil Analysis using ANSYS 
 
Three airfoil shapes with high camber shown in Fig. 3 were 
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chosen from UIUC website [4] for designing wing of a 
UAV(Subsonic). A preliminary parameter study was per-
formed manually to find the most suitable chord length for 
obtaining high L/D ratio.   
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A grid was generated as shown in Fig. 4. for processing in 
solver. The various boundary conditions were analysed be-
fore solving like Inlet, Outlet and walls for input to the 
solver. 
 
Grid generation 
 
 
 
 
 
 
 
 
 
 
 
 
The analysis gave the following results as shown in Fig5. 
Below: 
 
 
 
 
 
 
 
 
 
 
 

 
A similar analysis as shown in Fig. 5 were performed on 
CH10 and S1223 and its results were interpreted which 
showed that best L/D ratio was given by E423 and hence it 
was chosen for the final design of UAV. 
Airfoil L/D Ratio 
S1223 5.128 
CH10 6.29 
E423 7.26 
 

3.1.2 Airfoil Analysis using XFLR 
For validation of results a another analysis technique was 

used to compare the results. This technique is software based 
called XFLR Analysis. It is highly  used software in aerodynam-
ic airfoil designing.  

 
 
 
 
 
 

 

 

 

 

 As one can interpret from the above graph that E423 is giv-
ing the most stable CL/CD  ratio. A better L/D ratio leads to 
better fuel economy, climb performance and glide ratio. The-
se factors are important to obtain high aerodynamic efficien-
cy.

4 CONCLUSION 

The fluid flow equations of aerodynamics which form the ba-

sis of CFD were discussed in this paper. Navier stokes equa-

tion was derived by considering a small fluid element for a 

unsteady flow and its various parts were discussed for inter-

pretation of its physical meaning in real life. Finally after in-

terpreting the meaning of fluid flow equations an experimen-

tation was conducted on airfoil for analyzing its Lift in ANSYS 

software and its results were obtained by postprocessing 

which were compared to XFLR results for validation. The 

comparison has shown that E423 airfoil gives the desired high 

L/D ratio and hence it was chosen for final design of wing of 

the UAV. 
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Fig. 3 Airfoil shapes.  a) CH10 , b) E243 c) S1223 

 

 

Fig. 4.Airfoil Grid generated in Gambit for processing in ANSYS 

 

 

Fig. 5.CFD Analysis showing pressure contour for airfoil  
E423 
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